Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
1.
R Soc Open Sci ; 9(1): 211021, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1722768

ABSTRACT

The evolution of SARS-CoV-2 virulence, or lethality, threatens to exacerbate the burden of COVID-19 on society. How might COVID-19 vaccines alter selection for increased SARS-CoV-2 virulence? Framing current evidence surrounding SARS-CoV-2 biology and COVID-19 vaccines in the context of evolutionary theory indicates that prospects for virulence evolution remain uncertain. However, differential effects of vaccinal immunity on transmission and disease severity between respiratory compartments could select for increased virulence. To bound expectations for this outcome, we analyse an evo-epidemiological model. Synthesizing model predictions with vaccine efficacy data, we conclude that while vaccine-driven virulence remains a theoretical possibility, the risk is low if vaccines provide sustained robust protection against infection. Furthermore, we found that any increases in transmission concomitant with increases in virulence would be unlikely to threaten prospects for herd immunity in a highly immunized population. Given that virulence evolution would nevertheless impact unvaccinated individuals and populations with low vaccination rates, it is important to achieve high vaccination rates worldwide and ensure that vaccinal immunity provides robust protection against both infection and disease, potentially through the use of booster doses.

2.
J Biol Dyn ; 16(1): 14-28, 2022 12.
Article in English | MEDLINE | ID: covidwho-1612382

ABSTRACT

COVID-19 is a disease caused by infection with the virus 2019-nCoV, a single-stranded RNA virus. During the infection and transmission processes, the virus evolves and mutates rapidly, though the disease has been quickly controlled in Wuhan by 'Fangcang' hospitals. To model the virulence evolution, in this paper, we formulate a new age structured epidemic model. Under the tradeoff hypothesis, two special scenarios are used to study the virulence evolution by theoretical analysis and numerical simulations. Results show that, before 'Fangcang' hospitals, two scenarios are both consistent with the data. After 'Fangcang' hospitals, Scenario I rather than Scenario II is consistent with the data. It is concluded that the transmission pattern of COVID-19 in Wuhan obey Scenario I rather than Scenario II. Theoretical analysis show that, in Scenario I, shortening the value of L (diagnosis period) can result in an enormous selective pressure on the evolution of 2019-nCoV.


Subject(s)
COVID-19 , China/epidemiology , Humans , Models, Biological , SARS-CoV-2 , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL